Inorganic Chemistry

Electrochemical Preparation of the Bis(ruthenocenium) Dication

Sabrina Trupia, Ayman Nafady, and William E. Geiger*

Department of Chemistry, University of Vermont, Burlington, Vermont 05405 Received May 1, 2003

The electrochemical oxidation of ruthenocene (1) in $CH_2Cl_2/[NBu_4]A$, where $A = [B(C_6F_5)_4]^-$ or $[B(C_6H_3(CF_3)_2)_4]^-$, gives the dimeric dication $[(RuCp_2)_2]^{2+}$, 2^{2+} , in equilibrium with the 17-electron ruthenocenium ion 1⁺. At room temperature the rapid equilibrium accounts for the quasi-Nernstian cyclic voltammetry (CV) behavior $(E_{1/2} = 0.41 \text{ V vs FeCp}_2, \text{ A} = [B(C_6F_5)_4]^{-})$. Direct electrochemical evidence for 2^{2+} is seen by CV and by bulk electrolysis at 243 K. The bis(ruthenocenium) dication undergoes a highly irreversible two-electron cathodic reaction at E_{pc} ca. 0 V. Anodic electrolysis of **1** at 243 K using $[B(C_6H_3(CF_3)_2)_4]^-$ as the supporting electrolyte, followed by cathodic electrolysis of 2^{2+} , regenerates half of the original 1. Precipitation of 2^{2+} occurs when the supporting electrolyte is $[B(C_6F_5)_4]^-$, allowing facile isolation of $[(RuCp_2)_2][B(C_6F_5)_4]_2$. A second, unidentified, anodic product also reduces to give back ruthenocene. Digital simulations of the CV curves of 1 at 243 K give a dimerization equilibrium constant of 9×10^4 M⁻¹ for $K_{eq} =$ $[(RuCp_2)_2^{2+}]/2$ $[RuCp_2]^+$ in CH₂Cl₂/0.1 M $[NBu_4][B(C_6F_5)_4]$.

Compared to the simplicity of the oxidation of ferrocene, that of ruthenocene, RuCp_2 ($\text{Cp} = \eta^5\text{-}\text{C}_5\text{H}_5$), is complex and still not well understood. Hill et al.¹ reported the first electrolyte conditions, namely, $\text{CH}_2\text{Cl}_2/0.1 \text{ M} [\text{NBu}_4][\text{B}(\text{C}_6\text{H}_3\text{-}(\text{CF}_3)_2)_4]$, in which ruthenocene undergoes an apparently reversible one-electron oxidation to $[\text{RuCp}_2]^+$, $\mathbf{1}^+$ (eq 1). A

$$\operatorname{RuCp}_{2} \rightleftharpoons \left[\operatorname{RuCp}_{2}\right]^{+} + e^{-} \tag{1}$$

number of earlier studies had found that the oxidation of **1** results in products that vary with the nature of the medium, most likely owing to disproportionation reactions involving the primary oxidation products with added or adventitious nucleophiles.² It has been postulated in several papers that the bis(ruthenocenium) dication $[RuCp_2]_2^{2+}$, **2**²⁺, may play

a role in the redox process,^{1,3,4} but there is no published experimental evidence to this effect. In the present communication we report cyclic voltammetry (CV) and bulk electrolysis data in CH₂Cl₂/0.1 M [NBu₄]A, where A is either the tetrakis(perfluoroaryl)borate (TFAB) anion⁵ [B(C₆F₅)₄]⁻ or [B(C₆H₃(CF₃)₂)₄]⁻, which give the first experimental verification of 2^{2+} . The dimer dication is favored over the monomer monocation under these conditions (eq 2, $K_{eq} > 1$), requiring that the role of 2^{2+} be taken into account in oxidative reactions of **1**.

$$2[\operatorname{RuCp}_2]^+ \rightleftharpoons [(\operatorname{RuCp}_2)_2]^{2+} \qquad K_{\operatorname{eq}} = k_{\operatorname{dim}}/k_{\operatorname{mon}} \quad (2)$$

Ruthenocene undergoes a one-electron oxidation having a quasi-Nernstian CV shape in CH₂Cl₂ containing 0.1 M [NBu₄][TFAB], analogous to the behavior reported earlier for **1** in 0.1 M [NBu₄][B(C₆H₃(CF₃)₂)₄].¹ No qualitative change in behavior was observed at room temperature over a substrate concentration range of 0.2–5.2 mM at a scan rate of 0.1 V s⁻¹ (Figure S1 in Supporting Information). An $E_{1/2}$ value of 0.41 V vs FeCp₂ is estimated^{6,7} for [RuCp₂]^{0/+}. At reduced temperatures the oxidation displays decreased electrochemical reversibility⁸ and a new cathodic wave for a reaction product, ascribed to **2**²⁺, is observed (Figure 1). This product wave has a broad and electrochemically irreversible shape for which the peak potential (-0.06 V vs FeCp₂ at $\nu = 0.2$ V s⁻¹, T = 243 K) is dependent on scan rate, temperature, supporting electrolyte anion, and substrate

- (3) Droege, M. W.; Harman, W. D.; Taube, H. Inorg. Chem. 1987, 26, 1309.
- (4) Inam-ul-Haque; Iqbal, S. Sci. Int. (Lahore) 2001, 13, 49 (CAN 135: 217544.
- (5) LeSuer, R. J.; Geiger, W. E. Angew. Chem., Int. Ed. 2000, 39, 248.
- (6) The measured E_{1/2} is slightly dependent on concentration of RuCp₂, as expected for a redox process with a coupled reversible equilibrium. The E_{1/2} of 0.41 V refers to a concentration of 1 mM 1 in 0.1 M [NBu₄][B(C₆F₅)₄]. A negative potential shift is observed as the concentration increases, consistent with an EC mechanism in which the chemical reaction is fast and reversible. For introduction to EC mechanisms, see: Bard, A. J.; Faulkner, L. R. *Electrochemical Methods*, 2nd ed.; John Wiley and Sons: New York, 2001; p 473.
- (7) The literature value¹ for 0.5 mM 1 in CH₂Cl₂/0.1 M [NBu₄][B(C₆H₃-(CF₃)₂)₄] of 0.56 V at room temperature was confirmed by independent measurements. Our measured value for 5 mM 1 in CH₂Cl₂/0.05 M [NBu₄][B(C₆H₃(CF₃)₂)₄] is 0.57 V at 243 K. The *E*_{1/2} values are decidedly more negative with [NBu₄][B(C₆F₅)₄] as supporting electrolyte.
- (8) The reverse-to-forward current ratios for the $[RuCp_2]^{0/+}$ wave varied from 0.4 (i.e., chemically irreversible) at $\nu = 0.05$ V s⁻¹ to 0.8 at $\nu = 1$ V s⁻¹, T = 243 K.

10.1021/ic030146+ CCC: \$25.00 © 2003 American Chemical Society Published on Web 08/13/2003

^{*} Author to whom correspondence should be addressed. E-mail: wgeiger@ zoo.uvm.edu.

Hill, M. G.; Lamanna, W. M.; Mann, K. R. Inorg. Chem. 1991, 30, 4687.

^{(2) (}a) Bublitz, D. E.; Hoh, G.; Kuwana, T. Chem. Ind. (London) 1959, 635. (b) Kuwana, T.; Bublitz, D. E.; Hoh, G. J. Am. Chem. Soc. 1960, 82, 5811. (c) Gubin, S. P.; Smirnova, S. A.; Denisovich, L. I.; Lubovich, A. A. J. Organomet. Chem. 1971, 30, 243. (d) Denisovich, L. I.; Zakurin, N. V.; Bezrukova, A. A.; Gubin, S. P. J. Organomet. Chem. 1974, 81, 207. (e) See also: Kukharenko, S. V.; Strelets, V. V.; Kudinov, A. R.; Kreidlin, A. Z.; Peterleitner, M. G.; Denisovich, L. I.; Rybinskaya, M. I. J. Organomet. Chem. 1996, 519, 1.

Figure 1. Cyclic voltammogram of 2 mM RuCp₂ in CH₂Cl₂/0.1 M [NBu₄]-[B(C₆F₅)₄] at 2 mm (*d*) glassy carbon electrode, T = 243 K, $\nu = 0.2$ V s⁻¹. Inset gives scan under same conditions at ambient temperature.

concentration. At subambient temperatures, increasing concentrations lead to diminished reversibility for the $[RuCp_2]^{0/+}$ couple and a more dominant contribution from the wave for 2^{2+} (Figure S2 in Supporting Information).

The voltammetry is consistent with the EC_{dim} mechanism of eqs 1 and 2, in which the chemical reaction following electron transfer is the dimerization of the ruthenocenium ion to give the bis(ruthenocenium) dication $[(RuCp_2)_2]^{2+}$, $2^{2+}.9.10$ Reduction of the latter occurs in an electrochemically irreversible net two-electron cathodic process (E_{pc} ca. 0 V)¹¹ to regenerate neutral ruthenocene (eq 3).

$$\left[\left(\operatorname{RuCp}_{2}\right)_{2}\right]^{2^{+}} + 2e^{-} \rightarrow 2\operatorname{RuCp}_{2} \tag{3}$$

The long-term stability and isolation of the dimer dication was addressed by bulk electrolysis of 5 mM RuCp₂ at a platinum basket electrode. At room temperature a green solution was produced with a coulomb count in excess of 1.2 F/equiv. Discontinuing the electrolysis resulted in a rapid color change to red. Subsequent CV scans showed the presence of several products, including 2^{2+} . An essentially identical result was obtained with benzotrifluoride¹² as the solvent.

The anodic reaction was simplified by electrolysis at lower temperatures. At 243 K a precise coulometry of 1 F/equiv was observed in either dichloromethane or benzotrifluoride. When the electrolyte anion was TFAB, a light yellow

Figure 2. Cyclic voltammograms to three different switching potentials after anodic oxidation of 5 mM ruthenocene in $CH_2Cl_2/0.05$ M [NBu₄]-[B(C₆H₃(CF₃)₂)₄] at 243 K, 1 mm glassy carbon electrode, 0.1 V s⁻¹.

Figure 3. Linear scan voltammograms obtained during electrolysis experiments on 5 mM ruthenocene in CH₂Cl₂/0.05 M [NBu₄][B(C₆H₃-(CF₃)₂)₄] at 243 K, 1 mm glassy carbon electrode, 3 mV s⁻¹ scan rate: (-) (a) initial solution; (-·-·) (b) after anodic electrolysis at $E_{appl} = 0.8$ V; (- -) (c) after cathodic re-electrolysis at $E_{appl} = -0.12$ V; (O) (d) after final cathodic re-electrolysis at $E_{appl} = -0.65$ V.

precipitate formed, which was filtered off in good yield. It gave an elemental analysis¹³ consistent with $[(RuCp_2)_2]$ - $[B(C_6F_5)_4]_2$ and an IR feature ($\nu_{CH(bend)}$, 846 cm⁻¹) consistent with ruthenocenium moieties.¹⁴ X-ray quality crystals of 2^{2+} have not yet been obtained. The major remaining CV feature of the electrolysis solution was an irreversible cathodic peak at -0.3 V to -0.4 V depending on electrolyte, due to what we refer to as a secondary product (Figure 2). When the electrolyte anion was $[B(C_6H_3(CF_3)_2)_4]^-$, no precipitation was observed. The olive-colored solution had CV and linear scan voltammetry (LSV) features characteristic of both the $1^+ + 2^{2+}$ mixture and the secondary product (Figures 2 and 3). Cathodic re-electrolysis at $E_{appl} = -0.12$ V regenerated ca.

⁽⁹⁾ An alternative mechanism is one in which 1⁺ reacts with 1 to form the dimer *monocation* 2⁺, which then undergoes oxidation to the dication 2²⁺. For more on radical-radical vs radical-substrate dimerization mechanisms, see ref 10.

^{(10) (}a) Nadjo, L.; Savéant, J. M. J. Electroanal. Chem. 1971, 33, 419; (b) 1973, 44, 327. (c) Amatore, C.; Garreau, D.; Hammi, M.; Pinson, J.; Savéant, J. M. J. Electroanal. Chem. 1985, 184, 1. (d) Crooks, R. M.; Bard, A. J. J. Electroanal. Chem. 1988, 240, 253.

⁽¹¹⁾ At $\nu = 0.2$ V s⁻¹, $E_{pc} = -0.06$ V in CH₂Cl₂[NBu₄][B(C₆F₅)₄]⁻ and 0.13 V in CH₂Cl₂[NBu₄][B(C₆H₃(CF₃)₂)₄].

⁽¹²⁾ Ohrenberg, C.; Geiger, W. E. Inorg. Chem. 2000, 39, 2948.

 ⁽¹³⁾ Elemental analysis (Robertson Laboratories): C, 43.74% (calcd 44.79%); H, 1.20% (calcd 1.10%).

⁽¹⁴⁾ Nujol mull spectra of **1** have a band at 806 cm⁻¹ assigned to $\nu_{CH(bend)}$ which increases by 40 cm⁻¹ to 846 cm⁻¹ for **2**²⁺. A similar shift has been assigned to $\nu_{CH(bend)}$ in ferrocene/ferrocenium (Kramer, J. A.; Hendrickson, D. N. *Inorg. Chem.* **1980**, *19*, 3330). We measure 815 cm⁻¹ for ferrocene and 855 cm⁻¹ for [FeCp₂][B(C₆F₅)₄] under identical sample conditions.

Figure 4. Comparison of CV experiment (–) and simulations (O) for 1 mM RuCp₂, T = 243 K, at two different scan rates: A, $\nu = 0.2$ V s⁻¹; B, $\nu = 1$ V s⁻¹. Pertinent simulation parameters: $1/1^+$, $E^\circ = 0.41$ V; $k_s = 1$ cm s⁻¹; $\alpha = 0.5$; $2^{2+}/2^+$, $E^\circ = 0.30$ V; $k_s = 1 \times 10^{-5}$ cm s⁻¹; $\alpha = 0.4$; $2^{+}/2$, $E^\circ = 0.37$; $k_s = 0.1$; $\alpha = 0.5$.

50% **1** through reduction of the mixture of 1^+ and 2^{2+} . Reelectrolysis at $E_{appl} = -0.65$ V, involving also the reduction of the secondary product, increased the regeneration of ruthenocene to 84% and produced another small wave with $E_{1/2} = 0.29$ V. Reduction of the secondary product, which on the basis of previous literature¹⁵ is likely to be a Ru(IV) species, is therefore seen to mainly regenerate ruthenocene.

On the basis of analogy to the structurally characterized³ osmium analogue, 2^{2+} is likely to have Cp rings that are tilted away from the Ru–Ru bond and rotated with respect to each other (90° in [(OsCp₂)₂][PF₆]₂) in order to minimize steric repulsions.¹⁶

Proposed Structure of $[(RuCp_2)_2]^{2+}$

Digital simulations¹⁷ help to delineate the ruthenocene oxidation mechanism. Figure 4 compares simulated and experimental curves employing EC_{dim} for the anodic process (eqs 1 and 2, $K_{\text{eq}} = 9 \times 10^4 \text{ M}^{-1}$; $k_{\text{dim}} = 6.5 \times 10^2 \text{ M}^{-1} \text{ s}^{-1}$) and $E_{\text{irrev}}E$ for the cathodic process (conditions: 1 mM ruthenocene at 243 K). The general shape and behavior of the cathodic wave is consistent with a two-electron process

(eq 3) in which the first electron transfer is the rate-limiting step.¹⁸ Neither the rates nor the $E_{1/2}$ values of the two-electron *cathodic* process are precisely determined by the simulations, which can be fit with experiment using ranges of values. Similarly shaped CV curves have been observed for a number of other dimetallic compounds in which reduction gives facile metal—metal bond cleavage.¹⁹ It is reported that the osmium analogue [(OsCp₂)₂]²⁺ reduces with re-formation of OsCp₂ upon reduction.²⁰

As expected on the basis of previous literature,^{1,2} addition of $[PF_6]^-$ or $[BF_4]^-$ to solutions of **1** in $CH_2Cl_2/[NBu_4]$ -[[TFAB] has a dramatic effect on the oxidation process. Even substoichiometric amounts of $[PF_6]^-$ decrease the chemical reversibility of $[RuCp_2]^{0/+}$ without evidence for the formation of the dimer (Figure S3, Supporting Information). The rapid reaction between $[RuCp_2]^+$ and $[PF_6]^-$ is likely to involve a formal Ru(IV) complex such as $[Ru(F-PF_5)Cp_2]^+$. Analogous complexes of the type $[RuCp_2X]^+$, where X = halide, have been isolated.²¹

Results to date may be summarized as follows. In a medium containing solvents of low donor strength and anions of weak nucleophilicity, the oxidation of **1** gives 17-electron **1**⁺ in equilibrium with the dominant dimer dication **2**²⁺. When the supporting electrolyte anion is TFAB, the dimer precipitates at 243 K, giving the light-yellow $[(RuCp_2)_2]$ - $[B(C_6F_5)_4]_2$. To our knowledge, this is only the second confirmed report of an unbridged metal–metal bonded metallocene, the precursor being the osmium analogue.³ Using $[B(C_6H_3(CF_3)_2)_4]^-$ as the electrolyte anion avoids the precipitation²² and enhances the formation of a yet unidentified secondary product which may be reduced back to ruthenocene. These findings should contribute to more systematic studies of the oxidative chemistry of ruthenocene, its derivatives, and its analogues.

Acknowledgment. The authors are grateful for the support of this work by the National Science Foundation (CHE -0092702). We also thank the Egyptian Cultural & Educational Bureau for support of A.N.

Supporting Information Available: Three figures (S1-S3) of voltammograms describing experimental results given in the text. This material is available free of charge via the Internet at http://pubs.acs.org.

IC030146+

- (19) (a) Richards, T. C.; Geiger, W. E.; Baird, M. C. Organometallics 1994, 13, 4494. (b) Tenhaeff, S. C.; Covert, K. J.; Castellani, M. P.; Grunkemeier, J.; Kunz, C.; Weakley, T. J. R.; Koenig, T.; Tyler, D. R. Organometallics 1993, 12, 5000. (c) Pugh, J. R.; Meyer, T. J. J. Am. Chem. Soc. 1992, 114, 3784. (d) Fortier, S.; Baird, M. C.; Preston, K. F.; Morton, J. R.; Ziegler, T.; Jaeger, T. J.; Watkins, W. C.; MacNeil, J. H.; Watson, K. A.; Hensel, K.; LePage, Y.; Charland, J.-P.; Williams, A. J. J. Am. Chem. Soc. 1991, 113, 542.
- (20) Kukharenko, S. V.; Bezrukova, A. A.; Rubezhov, A. Z.; Strelets, V. V. *Metalloorg. Khim.* **1990**, *3*, 634 (electrochemistry of osmocene in low-temperature THF).
- (21) (a) Sohn, Y. S.; Schlueter, A. W.; Hendrickson, D. N.; Gray, H. B. *Inorg. Chem.* 1974, *13*, 301. (b) Kirchner, K.; Dodgen, H. W.; Wherland, S.; Hunt, J. P. *Inorg. Chem.* 1990, *29*, 2381 and references therein.
- (22) The high solubility in nonaqueous solvents of salts containing [B(C₆H₃(CF₃)₂)₄]⁻ is well-known. See: Brookhart, M.; Liu, Y.; Goldman, E. W.; Timmers, D. A.; Williams, G. D. J. Am. Chem. Soc. **1991**, 113, 927.

⁽¹⁵⁾ Bruce, M. I. In *Comprehensive Organometallic Chemistry II*; Shriver, D. F., Bruce, M. I., Eds.; Pergamon Press: New York, 1995; Vol. 7, pp 608–609.

⁽¹⁶⁾ The van der Waals radii of ruthenium and osmium are similar.

⁽¹⁷⁾ Digital simulations were carried out using Digisim 3.03 (Bioanalytical Systems).

⁽¹⁸⁾ Ryan, M. D. J. Electrochem. Soc. 1978, 125, 547.